首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:On Extensions of Maximal Repeats in Compressed Strings
  • 本地全文:下载
  • 作者:Julian Pape-Lange
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2020
  • 卷号:161
  • 页码:27:1-27:13
  • DOI:10.4230/LIPIcs.CPM.2020.27
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:This paper provides upper bounds for several subsets of maximal repeats and maximal pairs in compressed strings and also presents a formerly unknown relationship between maximal pairs and the run-length Burrows-Wheeler transform. This relationship is used to obtain a different proof for the Burrows-Wheeler conjecture which has recently been proven by Kempa and Kociumaka in "Resolution of the Burrows-Wheeler Transform Conjecture". More formally, this paper proves that the run-length Burrows-Wheeler transform of a string S with z_S LZ77-factors has at most 73(logâ,, S )(z_S+2)² runs, and if S does not contain q-th powers, the number of arcs in the compacted directed acyclic word graph of S is bounded from above by 18q(1+log_q S )(z_S+2)².
  • 关键词:Maximal repeats; Extensions of maximal repeats; Combinatorics on compressed strings; LZ77; Burrows-Wheeler transform; Burrows-Wheeler transform conjecture; Compact suffix automata; CDAWGs
国家哲学社会科学文献中心版权所有