首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:The k-Cut Model in Conditioned Galton-Watson Trees
  • 本地全文:下载
  • 作者:Gabriel Berzunza ; Xing Shi Cai ; Cecilia Holmgren
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2020
  • 卷号:159
  • 页码:5:1-5:10
  • DOI:10.4230/LIPIcs.AofA.2020.5
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:The k-cut number of rooted graphs was introduced by Cai et al. [Cai and Holmgren, 2019] as a generalization of the classical cutting model by Meir and Moon [Meir and Moon, 1970]. In this paper, we show that all moments of the k-cut number of conditioned Galton-Watson trees converge after proper rescaling, which implies convergence in distribution to the same limit law regardless of the offspring distribution of the trees. This extends the result of Janson [Janson, 2006].
  • 关键词:k-cut; cutting; conditioned Galton-Watson trees
国家哲学社会科学文献中心版权所有