首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Counting Cubic Maps with Large Genus
  • 本地全文:下载
  • 作者:Zhicheng Gao ; Mihyun Kang
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2020
  • 卷号:159
  • 页码:13:1-13:13
  • DOI:10.4230/LIPIcs.AofA.2020.13
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We derive an asymptotic expression for the number of cubic maps on orientable surfaces when the genus is proportional to the number of vertices. Let Σ_g denote the orientable surface of genus g and θ=g/nâ^^ (0,1/2). Given g,nâ^^ â". with gâ†' â^Z and n/2-gâ†' â^Z as nâ†' â^Z, the number C_{n,g} of cubic maps on Σ_g with 2n vertices satisfies C_{n,g} â^¼ (g!)² α(θ) β(θ)ⁿ γ(θ)^{2g}, as gâ†' â^Z, where α(θ),β(θ),γ(θ) are differentiable functions in (0,1/2). This also leads to the asymptotic number of triangulations (as the dual of cubic maps) with large genus. When g/n lies in a closed subinterval of (0,1/2), the asymptotic formula can be obtained using a local limit theorem. The saddle-point method is applied when g/nâ†' 0 or g/nâ†' 1/2.
  • 关键词:cubic maps; triangulations; cubic graphs on surfaces; generating functions; asymptotic enumeration; local limit theorem; saddle-point method
国家哲学社会科学文献中心版权所有