首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:On the Probability That a Random Digraph Is Acyclic
  • 本地全文:下载
  • 作者:Dimbinaina Ralaivaosaona ; Vonjy Rasendrahasina ; Stephan Wagner
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2020
  • 卷号:159
  • 页码:25:1-25:18
  • DOI:10.4230/LIPIcs.AofA.2020.25
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Given a positive integer n and a real number p â^^ [0,1], let D(n,p) denote the random digraph defined in the following way: each of the binom(n,2) possible edges on the vertex set {1,2,3,…,n} is included with probability 2p, where all edges are independent of each other. Thereafter, a direction is chosen independently for each edge, with probability 1/2 for each possible direction. In this paper, we study the probability that a random instance of D(n,p) is acyclic, i.e., that it does not contain a directed cycle. We find precise asymptotic formulas for the probability of a random digraph being acyclic in the sparse regime, i.e., when np = O(1). As an example, for each real number μ, we find an exact analytic expression for φ(μ) = lim_{nâ†' â^Z} n^{1/3} â"™{D(n,1/n (1+μ n^{-1/3})) is acyclic}.
  • 关键词:Random digraphs; acyclic digraphs; asymptotics
国家哲学社会科学文献中心版权所有