首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Quantum Coupon Collector
  • 本地全文:下载
  • 作者:Srinivasan Arunachalam ; Aleksandrs Belovs ; Andrew M. Childs
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2020
  • 卷号:158
  • 页码:10:1-10:17
  • DOI:10.4230/LIPIcs.TQC.2020.10
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We study how efficiently a k-element set SâS†[n] can be learned from a uniform superposition S> of its elements. One can think of S>=â^'_{iâ^^S} i>/â^S S as the quantum version of a uniformly random sample over S, as in the classical analysis of the "coupon collector problem." We show that if k is close to n, then we can learn S using asymptotically fewer quantum samples than random samples. In particular, if there are n-k=O(1) missing elements then O(k) copies of S> suffice, in contrast to the Î~(k log k) random samples needed by a classical coupon collector. On the other hand, if n-k=Ω(k), then Ω(k log k) quantum samples are necessary. More generally, we give tight bounds on the number of quantum samples needed for every k and n, and we give efficient quantum learning algorithms. We also give tight bounds in the model where we can additionally reflect through S>. Finally, we relate coupon collection to a known example separating proper and improper PAC learning that turns out to show no separation in the quantum case.
  • 关键词:Quantum algorithms; Adversary method; Coupon collector; Quantum learning theory
国家哲学社会科学文献中心版权所有