首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Shortest Reconfiguration of Colorings Under Kempe Changes
  • 本地全文:下载
  • 作者:Marthe Bonamy ; Marc Heinrich ; Takehiro Ito
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2020
  • 卷号:154
  • 页码:35:1-35:14
  • DOI:10.4230/LIPIcs.STACS.2020.35
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:A k-coloring of a graph maps each vertex of the graph to a color in {1, 2, …, k}, such that no two adjacent vertices receive the same color. Given a k-coloring of a graph, a Kempe change produces a new k-coloring by swapping the colors in a bicolored connected component. We investigate the complexity of finding the smallest number of Kempe changes needed to transform a given k-coloring into another given k-coloring. We show that this problem admits a polynomial-time dynamic programming algorithm on path graphs, which turns out to be highly non-trivial. Furthermore, the problem is NP-hard even on star graphs and we show that on such graphs it admits a constant-factor approximation algorithm and is fixed-parameter tractable when parameterized by the number k of colors. The hardness result as well as the algorithmic results are based on the notion of a canonical transformation.
  • 关键词:Combinatorial Reconfiguration; Graph Algorithms; Graph Coloring; Kempe Equivalence
国家哲学社会科学文献中心版权所有