摘要:Neutron Bragg edge imaging enables spatially resolved studies of crystalline features through the exploitation and analysis of Bragg edges in the transmission spectra recorded in each pixel of an imaging detector. Studies with high spectral resolutions, as is required e.g. for high-resolution strain mapping, and with large wavelength ranges have been largely reserved to pulsed neutron sources. This is due to the fact, that the efficiency for high wavelength resolution measurements is significantly higher at short pulse sources. At continuous sources a large fraction of the available neutrons must be sacrificed in order to achieve high wavelength resolution for a relevant bandwidth e.g. through a chopper system. Here we introduce a pulse overlap transmission imaging technique, which is suited to increase the available flux of high wavelength resolution time-of-flight neutron Bragg edge imaging at continuous neutron sources about an order of magnitude. Proof-of-principle measurements utilizing a chopper with a fourfold repeated random slit distribution of eight slits were performed at a thermal neutron beamline. It is demonstrated, that disentanglement of the overlapping pulses is achieved with the correlation theorem for signal processing. Thus, the Bragg edge pattern can be reconstructed from the strongly overlapping Bragg edge spectra recorded and the results demonstrate the feasibility of the technique.