首页    期刊浏览 2024年10月07日 星期一
登录注册

文章基本信息

  • 标题:Self-defect-passivation by Br-enrichment in FA-doped Cs 1−x FA x PbBr 3 quantum dots: towards high-performance quantum dot light-emitting diodes
  • 本地全文:下载
  • 作者:Young Ran Park ; Sangwon Eom ; Hong Hee Kim
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • DOI:10.1038/s41598-020-71666-8
  • 出版社:Springer Nature
  • 摘要:Halide vacancy defect is one of the major origins of non-radiative recombination in the lead halide perovskite light emitting devices (LEDs). Hence the defect passivation is highly demanded for the high-performance perovskite LEDs. Here, we demonstrated that FA doping led to the enrichment of Br in Cs1−xFAxPbBr3 QDs. Due to the defect passivation by the enriched Br, the trap density in Cs1−xFAxPbBr3 significantly decreased after FA doping, and which improved the optical properties of Cs1−xFAxPbBr3 QDs and their QD-LEDs. PLQY of Cs1–xFAxPbBr3 QDs increased from 76.8% (x = 0) to 85.1% (x = 0.04), and Lmax and CEmax of Cs1–xFAxPbBr3 QD-LEDs were improved from Lmax = 2880 cd m−2 and CEmax = 1.98 cd A−1 (x = 0) to Lmax = 5200 cd m−2 and CEmax = 3.87 cd A−1 (x = 0.04). Cs1–xFAxPbBr3 QD-LED device structure was optimized by using PVK as a HTL and ZnO modified with b-PEI as an ETL. The energy band diagram of Cs1–xFAxPbBr3 QD-LEDs deduced by UPS analyses.
国家哲学社会科学文献中心版权所有