标题:Analysis of leaf morphology, secondary metabolites and proteins related to the resistance to Tetranychus cinnabarinus in cassava ( Manihot esculenta Crantz)
摘要:Constitutive resistance of plant can be divided into physical and chemical barriers. Cassava (Manihot esculenta Crantz) is susceptible to mites, especially Tetranychus cinnabarinus. Although significant differences in the resistance to T. cinnabarinus are observed in different cassava cultivars, limited research has been done on the mechanism accounting for the resistance. The aim of this study was to explore the mechanism of resistance to T. cinnabarinus by comparing morphology, secondary metabolites and proteins in different cassava cultivars. The anatomical structure of leaves showed that the cassava cultivar Xinxuan 048 (XX048), which showed a stronger resistance to T. cinnabarinus in both greenhouse testing and three years field evaluation tests (2016–2018), had thicker palisade tissue, spongy tissue, lower epidermis and leaf midrib tissue compared to cultivar Guire 4 (GR4). Greenhouse evaluation demonstrated that originally these cultivars were different, leading to differences in constitutive levels of metabolites. The proteomic analysis of protected leaves in XX048 and GR4 revealed that up-regulated differentially expressed proteins (DEPs) were highly enriched in secondary metabolic pathways, especially in the biosynthesis of flavonoids. This study not only provides a comprehensive data set for overall proteomic changes of leaves in resistant and susceptible cassava, but also sheds light on the morphological characteristics of cassava-mite interaction, secondary metabolite defense responses, and molecular breeding of mite-resistant cassava for effective pest control.