首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Synthetic photoplethysmogram generation using two Gaussian functions
  • 本地全文:下载
  • 作者:Qunfeng Tang ; Zhencheng Chen ; Rabab Ward
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • DOI:10.1038/s41598-020-69076-x
  • 出版社:Springer Nature
  • 摘要:Evaluating the performance of photoplethysmogram (PPG) event detection algorithms requires a large number of PPG signals with different noise levels and sampling frequencies. As publicly available PPG databases provide few options, artificially constructed PPG signals can also be used to facilitate this evaluation. Here, we propose a dynamic model to synthesize PPG over specified time durations and sampling frequencies. In this model, a single pulse was simulated by two Gaussian functions. Additionally, the beat-to-beat intervals were simulated using a normal distribution with a specific mean value and a specific standard deviation value. To add periodicity and to generate a complete signal, the circular motion principle was used. We synthesized three classes of pulses by emulating three different templates: excellent (systolic and diastolic waves are salient), acceptable (systolic and diastolic waves are not salient), and unfit (systolic and diastolic waves are noisy). The optimized model fitting of the Gaussian functions to the templates yielded 0.99, 0.98, and 0.85 correlations between the template and synthetic pulses for the excellent, acceptable, and unfit classes, respectively, with mean square errors of 0.001, 0.003, and 0.017, respectively. By comparing the heart rate variability of real PPG and randomly synthesized PPG for 5 min in 116 records from the MIMIC III database, strong correlations were found in SDNN, RMSSD, LF, HF, SD1, and SD2 (0.99, 0.89, 0.84, 0.89, 0.90 and 0.95, respectively).
国家哲学社会科学文献中心版权所有