首页    期刊浏览 2024年10月07日 星期一
登录注册

文章基本信息

  • 标题:Sap flow of Amorpha fruticosa : implications of water use strategy in a semiarid system with secondary salinization
  • 本地全文:下载
  • 作者:Qiqi Cao ; Junran Li ; Huijie Xiao
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • DOI:10.1038/s41598-020-70511-2
  • 出版社:Springer Nature
  • 摘要:A. fruticosa (Amorpha fruticosa L.) is widely used for revegetation in semiarid lands that undergo secondary salinization. Understanding A. fruticosa plants response to soil water and salt stress is essential for water irrigation management and proper revegetation practices. In this study, we measured sap flow, stomatal conductance, meteorological and soil characteristics in an A. fruticosa community that recently experienced secondary salinization in northwestern China. Results of our study showed that daytime and nocturnal sap flows averaged 804.37 g·cm−2·day−1 and 46.06 g·cm−2·day−1, respectively, during the growing season. Within individual days, the highest sap flow appeared around noon local time and followed a similar pattern of photosynthetically active radiation (PAR). Despite the significant effect of meteorological factors on the characteristics of sap flow, our study highlighted that the sap flow of A. fruticosa is strongly regulated by the availability of soil relative extractable water (REW). The daytime sap flow, which is predominant compared to nocturnal sap flow, was strongly affected by PAR, air temperature and vapor-pressure deficit. With water stress in the top 40 cm of the soil (REW0–40 cm 0.4), the nocturnal sap flow is mainly used to replenish the stem water content and sustain nocturnal transpiration. Under soil water stress, nocturnal sap flow is mainly used to replenish stem water content. The results of our study indicate that it is necessary to shorten the irrigation cycle during the primary growing period (May–July) of A. fruticosa. Moreover, in the absence of soil water stress (REW0–40 cm > 0.4), A. fruticosa can survive well in an saline environment with soil EC < 5 mS·cm−1.
国家哲学社会科学文献中心版权所有