摘要:Ruthenium–bipyridinetriphenylphosphine–GABA (RuBi–GABA) is a caged compound that allows studying the neuronal transmission in a specific region of a neuron. The inhibitory neurotransmitter γ-aminobutyric acid (GABA) is bound to a caged group that blocks the interaction of the neurotransmitter with its receptor site. Following linear—one-photon (1P)—and non-linear—multi-photon—absorption of light, the covalent bond of the caged molecule is broken, and GABA is released. Such a controlled release in time and space allows investigating the interaction with its receptor in four dimensions (X,Y,Z,t). Taking advantage of this strategy, we succeeded in addressing the modulation of GABAA in rat cerebellar neurons by coupling the photoactivation process, by confocal or two-photon excitation microscopy, with the electrophysiological technique of the patch-clamp in the whole-cell configuration. Key parameters have been comprehensively investigated and correlated in a temporally and spatially confined way, namely: photoactivation laser power, time of exposure, and distance of the uncaging point from the cell of interest along the X, Y, Z spatial coordinates. The goal of studying specific biological events as a function of controlled physical parameters has been achieved.