首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Conservation of Cdc14 phosphatase specificity in plant fungal pathogens: implications for antifungal development
  • 本地全文:下载
  • 作者:Andrew G. DeMarco ; Kedric L. Milholland ; Amanda L. Pendleton
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • DOI:10.1038/s41598-020-68921-3
  • 出版社:Springer Nature
  • 摘要:Cdc14 protein phosphatases play an important role in plant infection by several fungal pathogens. This and other properties of Cdc14 enzymes make them an intriguing target for development of new antifungal crop treatments. Active site architecture and substrate specificity of Cdc14 from the model fungus Saccharomyces cerevisiae (ScCdc14) are well-defined and unique among characterized phosphatases. Cdc14 appears absent from some model plants. However, the extent of conservation of Cdc14 sequence, structure, and specificity in fungal plant pathogens is unknown. We addressed this by performing a comprehensive phylogenetic analysis of the Cdc14 family and comparing the conservation of active site structure and specificity among a sampling of plant pathogen Cdc14 homologs. We show that Cdc14 was lost in the common ancestor of angiosperm plants but is ubiquitous in ascomycete and basidiomycete fungi. The unique substrate specificity of ScCdc14 was invariant in homologs from eight diverse species of dikarya, suggesting it is conserved across the lineage. A synthetic substrate mimetic inhibited diverse fungal Cdc14 homologs with similar low µM Ki values, but had little effect on related phosphatases. Our results justify future exploration of Cdc14 as a broad spectrum antifungal target for plant protection.
国家哲学社会科学文献中心版权所有