首页    期刊浏览 2025年02月17日 星期一
登录注册

文章基本信息

  • 标题:Salt templated and graphene nanoplatelets draped copper (GNP-draped-Cu) composites for dramatic improvements in pool boiling heat transfer
  • 本地全文:下载
  • 作者:Aniket M. Rishi ; Satish G. Kandlikar ; Anju Gupta
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • DOI:10.1038/s41598-020-68672-1
  • 出版社:Springer Nature
  • 摘要:We demonstrate a novel technique to achieve highly surface active, functional, and tunable hierarchical porous coated surfaces with high wickability using a combination of ball milling, salt-templating, and sintering techniques. Specifically, using ball-milling to obtain graphene nanoplatelets (GNP) draped copper particles followed by salt templated sintering to induce the strength and cohesiveness to the particles. The salt-templating method was specifically used to promote porosity on the coatings. A systematic study was conducted by varying size of the copper particles, ratio of GNP to copper particles, and process parameters to generate a variety of microporous coatings possessing interconnected pores and tunnels that were observed using electron microscopy. Pool boiling tests exhibited a very high critical heat flux of 289 W/cm2 at a wall superheat of just 2.2 °C for the salt templated 3 wt% GNP draped 20 µm diameter copper particles with exceedingly high wicking rates compared to non-salt-templated sintered coatings. The dramatic improvement in the pool boiling performance occurring at a very low surface temperature due to tunable surface properties is highly desirable in heat transfer and many other engineering applications.
国家哲学社会科学文献中心版权所有