首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Albumin-derived perfluorocarbon-based artificial oxygen carriers can avoid hypoxic tissue damage in massive hemodilution
  • 本地全文:下载
  • 作者:Anna Wrobeln ; Johannes Jägers ; Theresa Quinting
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • DOI:10.1038/s41598-020-68701-z
  • 出版社:Springer Nature
  • 摘要:Artificial blood for clinical use is not yet available therefore, we previously developed artificial oxygen carriers (capsules) and showed their functionality in vitro and biocompatibility in vivo. Herein, we assessed the functionality of the capsules in vivo in a normovolemic hemodilution rat-model. We stepwise exchanged the blood of male Wistar-rats with medium either in the presence of capsules (treatment) or in their absence (control). We investigated tissue hypoxia thoroughly through online biomonitoring, determination of enzyme activity and pancreatic hormones in plasma, histochemical and immunohistochemical staining of small intestine, heart, liver and spleen as well as in situ hybridization of kidneys. After hemodilution, treated animals show higher arterial blood pressure and have a stable body temperature. Additionally, they show a more stable pH, a higher oxygen partial pressure (pO2), and a lower carbon dioxide partial pressure (pCO2). Interestingly, blood-glucose-levels drop severely in treated animals, presumably due to glucose consumption. Creatine kinase values in these animals are increased and isoenzyme analysis indicates the spleen as origin. Moreover, the small intestine of treated animals show reduced hypoxic injury compared to controls and the kidneys have reduced expression of the hypoxia-inducible erythropoietin mRNA. In conclusion, our capsules can prevent hypoxic tissue damage. The results provide a proof of concept for capsules as adequate erythrocyte substitute.
国家哲学社会科学文献中心版权所有