首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:協調フィルタリングにおけるメタラーニングの適用による疎なデータからの学習と不確実性の推論
  • 本地全文:下载
  • 作者:福馬 智生 ; 鳥海 不二夫
  • 期刊名称:人工知能学会論文誌
  • 印刷版ISSN:1346-0714
  • 电子版ISSN:1346-8030
  • 出版年度:2020
  • 卷号:35
  • 期号:5
  • 页码:F-JC3_1-9
  • DOI:10.1527/tjsai.35-5_F-JC3
  • 出版社:The Japanese Society for Artificial Intelligence
  • 摘要:

    Latent factor models such as Matrix Factorization have become the default choice for recommender systems due to their performance and scalability. However, such algorithms have two disadvantages. First, these models suffer from data sparsity. Second, they fail to account for model uncertainty. In this paper, we exploit a meta learning strategy to address these problems. The key idea behind our method is to learn predictive distributions conditioned on context sets of arbitrary size of user/item interaction information. Our proposed framework has the advantages of being easy to implement and applicable to any existing latent factor models, providing uncertainty capabilities. We demonstrate the significant superior performance of our model over previous state-of-the-art methods, especially for sparse data in the top-N recommendation task.

  • 关键词:machine learning;recommendation system;meta-learning
国家哲学社会科学文献中心版权所有