首页    期刊浏览 2024年12月05日 星期四
登录注册

文章基本信息

  • 标题:Subgoaling Techniques for Satisficing and Optimal Numeric Planning
  • 本地全文:下载
  • 作者:Enrico Scala ; Patrik Haslum ; Sylvie Thiébaux
  • 期刊名称:Journal of Artificial Intelligence Research
  • 印刷版ISSN:1076-9757
  • 出版年度:2020
  • 卷号:68
  • 页码:691-752
  • 出版社:American Association of Artificial
  • 其他摘要:This paper studies novel subgoaling relaxations for automated planning with propositional and numeric state variables. Subgoaling relaxations address one source of complexity of the planning problem: the requirement to satisfy conditions simultaneously. The core idea is to relax this requirement by recursively decomposing conditions into atomic subgoals that are considered in isolation. Such relaxations are typically used for pruning, or as the basis for computing admissible or inadmissible heuristic estimates to guide optimal or satisificing heuristic search planners. In the last decade or so, the subgoaling principle has underpinned the design of an abundance of relaxation-based heuristics whose formulations have greatly extended the reach of classical planning. This paper extends subgoaling relaxations to support numeric state variables and numeric conditions. We provide both theoretical and practical results, with the aim of reaching a good trade-off between accuracy and computation costs within a heuristic state-space search planner. Our experimental results validate the theoretical assumptions, and indicate that subgoaling substantially improves on the state of the art in optimal and satisficing numeric planning via forward state-space search.
  • 关键词:heuristics planning search
国家哲学社会科学文献中心版权所有