期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
印刷版ISSN:2158-107X
电子版ISSN:2156-5570
出版年度:2020
卷号:11
期号:8
DOI:10.14569/IJACSA.2020.0110806
出版社:Science and Information Society (SAI)
摘要:For our body to move, the muscle must activate by relaxing and contracting. Muscle activation produces bio-electric signals that can be detected using Electromyography or EMG. The signal produced by the muscle is affected by the type of contraction done by the muscle. The eccentric contraction generating different EMG signals from concentric contraction. EMG signal contains multiple features. These features can be extracted using MATLAB software. This paper focuses on the bicep brachii and brachioradialis in the upper arm and forearm, respectively. The EMG signals are extracted using surface EMG whereby electrical pads are placed onto the surface of the muscle. Features can then be extracted from the EMG signal. This paper will focus on the MAV, VAR, and RMS features of the EMG signal. The features are then classified into eccentric, concentric or isometric contraction. The performance of the K-Nearest Neighbour (KNN) classifier is inconsistent due to the EMG data variabilities. The accuracy varies from one data set to another. However, it is concluded that non-fatigue signal classification accuracy is higher than fatigue signal classification accuracy.