期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
印刷版ISSN:2158-107X
电子版ISSN:2156-5570
出版年度:2020
卷号:11
期号:2
DOI:10.14569/IJACSA.2020.0110276
出版社:Science and Information Society (SAI)
摘要:The learning methods with multiple levels of representation is called deep learning methods. The composition of simple but now linear modules results in deep-learning model. Deep-learning in near future will have many more success, because it requires very little engineering in hands and it can easily take ample amount of data for computation. In this paper the deep learning network is used to recognize speech emotions. The deep Autoencoder is constructed to learn the speech emotions (Angry, Happy, Neutral, and Sad) of Normal and Autistic Children. Experimental results evident that the categorical classification accuracy of speech is 46.5% and 33.3% for Normal and Autistic children speech respectively. Whereas, Auto encoder shows a very low classification accuracy of 26.1% for only happy emotion and no classification accuracy for Angry, Neutral and Sad emotions.