首页    期刊浏览 2025年02月28日 星期五
登录注册

文章基本信息

  • 标题:Métodos de aprendizaje automático en los estudios prospectivos desde un ejemplo de la financiación de la innovación en Colombia
  • 本地全文:下载
  • 作者:Ana Milena Padilla-Ospina ; Javier Enrique Medina-Vásquez ; Javier Humberto Ospina-Holguín
  • 期刊名称:Revista de Investigación, Desarrollo e Innovación
  • 印刷版ISSN:2027-8306
  • 电子版ISSN:2389-9417
  • 出版年度:2020
  • 卷号:11
  • 期号:1
  • 页码:9-21
  • DOI:10.19053/20278306.v11.n1.2020.11676
  • 出版社:Universidad Pedagógica y Tecnológica de Colombia
  • 其他摘要:The purpose of this article is to make a brief introduction to five advanced machine learning prediction methods which may be useful for the development of prospective studies: logistic regression, support vector machines, gradient powered machines, random forests and neural networks. In addition, it is explained what methodology can be carried out to ensure robustness and validate these prediction models. As an example, it is presented how the use of these methods allowed to identify the most important financial variables to predict the development of innovation activities in Colombian SMEs. The results of the use of these methods may allow generating short and medium-term forecasts that serve to facilitate prospective studies with broader methods, such as the construction of scenarios, with the purpose of generating evidence-based proposals as a roadmap for long-term planning and public policy.
  • 关键词:regresión logística;;máquinas de vectores de soporte;;máquinas de gradiente potencia;;bosques aleatorios;;redes neuronales
国家哲学社会科学文献中心版权所有