首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:A principal component analysis-based feature dimensionality reduction scheme for content-based image retrieval system
  • 本地全文:下载
  • 作者:Oluwole A Adegbola ; Ismail A Adeyemo ; Folasade A Semire
  • 期刊名称:TELKOMNIKA (Telecommunication Computing Electronics and Control)
  • 印刷版ISSN:2302-9293
  • 出版年度:2020
  • 卷号:18
  • 期号:4
  • 页码:1892-1896
  • DOI:10.12928/telkomnika.v18i4.11176
  • 出版社:Universitas Ahmad Dahlan
  • 摘要:In content-based image retrieval (CBIR) system, one approach of image representation is to employ combination of low-level visual features cascaded together into a flat vector. While this presents more descriptive information, it however poses serious challenges in terms of high dimensionality and high computational cost of feature extraction algorithms to deployment of CBIR on platforms (devices) with limited computational and storage resources. Hence, in this work a feature dimensionality reduction technique based on principal component analysis (PCA) is implemented. Each image in a database is indexed using 174-dimensional feature vector comprising of 54-dimensional colour moments (CM54), 32-bin HSV-histogram (HIST32), 48-dimensional gabor wavelet (GW48) and 40-dimensional wavelet moments (MW40). The PCA scheme was incorporated into a CBIR system that utilized the entire feature vector space. The k-largest eigenvalues that yielded a not more than 5% degradation in mean precision were retained for dimensionality reduction. Three image databases (DB10, DB20 and DB100) were used for testing. The result obtained showed that with 80% reduction in feature dimensions, tolerable loss of 3.45, 4.39 and 7.40% in mean precision value were achieved on DB10, DB20 and DB100.
  • 关键词:content-based image retrieval system; feature dimensionality reduction; low-level visual feature; principal component analysis;
国家哲学社会科学文献中心版权所有