首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Handwriting identification using deep convolutional neural network method
  • 本地全文:下载
  • 作者:Oka Sudana ; I Wayan Gunaya ; I Ketut Gede Darma Putra
  • 期刊名称:TELKOMNIKA (Telecommunication Computing Electronics and Control)
  • 印刷版ISSN:2302-9293
  • 出版年度:2020
  • 卷号:18
  • 期号:4
  • 页码:1934-1941
  • DOI:10.12928/telkomnika.v18i4.14864
  • 出版社:Universitas Ahmad Dahlan
  • 摘要:Handwriting is a unique thing that produced differently for each person. Handwriting has a characteristic that remain the same with single writer, so a handwriting can be used as a variable in biometric systems. Each person have a different form of handwriting style but with a small possibility that same characters have something commons. We propose a handwriting identification method using sentence segmented handwriting forms. Sentence form is used to get more complete handwriting characteristics than using a single characters or words. Dataset used is divided into three categories of images, binary, grayscale, and inverted binary. All datasets have same image with different in color and consist of 100 class. Transfer learning used in this paper are pre-trained model VGG19. Training was conducted in 100 epochs. Highest result is grayscale images with genuince acceptance rate of 92.3% and equal error rate of 7.7%.
  • 关键词:biometrics; convolutional neural network; transfer learning; writer identification;
国家哲学社会科学文献中心版权所有