首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Matching algorithm performance analysis for autocalibration method of stereo vision
  • 本地全文:下载
  • 作者:Raden Arief Setyawan ; Rudy Soenoko ; Moch Agus Choiron
  • 期刊名称:TELKOMNIKA (Telecommunication Computing Electronics and Control)
  • 印刷版ISSN:2302-9293
  • 出版年度:2020
  • 卷号:18
  • 期号:2
  • 页码:1105-1112
  • DOI:10.12928/telkomnika.v18i2.14842
  • 出版社:Universitas Ahmad Dahlan
  • 摘要:Stereo vision is one of the interesting research topics in the computer vision field. Two cameras are used to generate a disparity map, resulting in the depth estimation. Camera calibration is the most important step in stereo vision. The calibration step is used to generate an intrinsic parameter of each camera to get a better disparity map. In general, the calibration process is done manually by using a chessboard pattern, but this process is an exhausting task. Self-calibration is an important ability required to overcome this problem. Self-calibration required a robust and good matching algorithm to find the key feature between images as reference. The purpose of this paper is to analyze the performance of three matching algorithms for the autocalibration process. The matching algorithms used in this research are SIFT, SURF, and ORB. The result shows that SIFT performs better than other methods.
  • 关键词:autocalibration; image matching; stereo vision;
国家哲学社会科学文献中心版权所有