期刊名称:TELKOMNIKA (Telecommunication Computing Electronics and Control)
印刷版ISSN:2302-9293
出版年度:2020
卷号:18
期号:1
页码:376-384
DOI:10.12928/telkomnika.v18i1.13379
出版社:Universitas Ahmad Dahlan
摘要:In modern power system operation, control, and planning, reactive power as part of power system component is very important in order to supply electrical load such as an electric motor. However, the reactive current that flows from the generator to load demand can cause voltage drop and active power loss. Hence, it is essential to install a compensating device such as a shunt capacitor close to the load bus to improve the voltage profile and decrease the total power loss of transmission line system. This paper presents the application of a genetic algorithm (GA), particle swarm optimization (PSO), and artificial bee colony (ABC)) to obtain the optimal size of the shunt capacitor where those capacitors are located on the critical bus. The effectiveness of the proposed technique is examined by utilizing Java-Madura-Bali (JAMALI) 500 kV power system grid as the test system. From the simulation results, the PSO and ABC algorithms are providing satisfactory results in obtaining the capacitor size and can reduce the total power loss of around 15.873 MW. Moreover, a different result is showed by the GA approach where the power loss in the JAMALI 500kV power grid can be compressed only up to 15.54 MW or 11.38% from the power system operation without a shunt capacitor. The three soft computing techniques could also maintain the voltage profile within 1.05 p.u and 0.95 p.u.
关键词:JAMALI 500kV; power loss; reactive power; shunt capacitor;