期刊名称:TELKOMNIKA (Telecommunication Computing Electronics and Control)
印刷版ISSN:2302-9293
出版年度:2020
卷号:18
期号:1
页码:394-406
DOI:10.12928/telkomnika.v18i1.12837
出版社:Universitas Ahmad Dahlan
摘要:This paper presents a new halftoning-based block truncation coding (HBTC) image reconstruction using sparse representation framework. The HBTC is a simple yet powerful image compression technique, which can effectively remove the typical blocking effect and false contour. Two types of HBTC methods are discussed in this paper, i.e., ordered dither block truncation coding (ODBTC) and error diffusion block truncation coding (EDBTC). The proposed sparsity-based method suppresses the impulsive noise on ODBTC and EDBTC decoded image with a coupled dictionary containing the HBTC image component and the clean image component dictionaries. Herein, a sparse coefficient is estimated from the HBTC decoded image by means of the HBTC image dictionary. The reconstructed image is subsequently built and aligned from the clean, i.e. non-compressed image dictionary and predicted sparse coefficient. To further reduce the blocking effect, the image patch is firstly identified as “border” and “non-border” type before applying the sparse representation framework. Adding the Laplacian prior knowledge on HBTC decoded image, it yields better reconstructed image quality. The experimental results demonstrate the effectiveness of the proposed HBTC image reconstruction. The proposed method also outperforms the former schemes in terms of reconstructed image quality.
关键词:error diffusion; halftoning-BTC; order dithering; sparse representation;