摘要:Two-dimensional elastodynamic displacements and stresses for a monoclinic solid have been obtained in relatively simple form by the use of the eigenvalue method, following Laplace and Fourier transforms. The main aim of this paper is to present a straightforward analytical eigenvalue method for a monoclinic solid which avoids the cumbersome nature of the problem and is convenient for numerical computation. The use of matrix notation avoids unwieldy mathematical expressions. A particular case of normal line-load acting in an orthotropic solid is discussed in detail. The corresponding deformation in time-domain is obtained numerically. The variations of elastodynamic displacements and stresses for an anisotropic medium with the horizontal distance have been shown graphically. It has been found that anisotropy is affecting the trend of distribution curves significantly.
关键词:Monoclinic; orthotropic; eignevalue method; two-dimensional deformation integral transforms; elastodynamic