首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Deep Learning-Based Signal-To-Noise Ratio Estimation Using Constellation Diagrams
  • 本地全文:下载
  • 作者:Xiaojuan Xie ; Shengliang Peng ; Xi Yang
  • 期刊名称:Mobile Information Systems
  • 印刷版ISSN:1574-017X
  • 出版年度:2020
  • 卷号:2020
  • 页码:1-9
  • DOI:10.1155/2020/8840340
  • 出版社:Hindawi Publishing Corporation
  • 摘要:Signal-to-noise ratio (SNR) estimation is a fundamental task of spectrum management and data transmission. Existing methods for SNR estimation usually suffer from significant estimation errors when SNR is low. This paper proposes a deep learning (DL) based SNR estimation algorithm using constellation diagrams. Since the constellation diagrams exhibit different patterns at different SNRs, the proposed algorithm achieves SNR estimation via constellation diagram recognition, which can be easily handled based on DL. Three DL networks, AlexNet, InceptionV1, and VGG16, are utilized for DL based SNR estimation. Experimental results show that the proposed algorithm always performs well, especially in low SNR scenarios.
国家哲学社会科学文献中心版权所有