摘要:This study aims at the shortcomings of the current industrial application of acrylonitrile wastewater treatment, using alkali-catalyzed hydrothermal technology to convert acrylonitrile into acrylic acid for achieving resource utilization. In this study, alkali metal, alkaline earth metal hydroxide and composite solid base were used as catalysts to investigate catalytic effects of these solid based on the hydrothermal reaction. The results show when using the alkali and alkaline-earth metal hydroxides as catalysts, the best effect of treatment was KOH and the highest yield of acrylic acid reached 56.60%. It was also found that, among the three kinds of solid base catalysts (Ca-O-Mg, K-O-Al, K-O-Si) adopted with the same mass and various loading capacity, K-O-Si (15%) was the most effective catalyst for the conversion of acrylonitrile, and the highest yield of acrylic acid reached 57.78%. This process provides an environmentally friendly method toward the synthesis of useful acrylic acid from acrylonitrile within a very short time.