摘要:The study of the mechanical behavior of gas hydrate bearing soils represents a major interest. The hydrate inclusions in sediments change their microstructure and their mechanical properties with it. We developed a numerical homogenization code in order to simulate the macro-mechanical response of a periodic unit-cell using local elastoplastic laws and complex geometries to define the microstructural components of the material. We applied it to a real image of fine-grained sediments containing gas hydrate veins. This technique allowed us to study the effect of an elastoplastic soil matrix and of different volume fractions of gas hydrates with complex shapes on the overall response of the material.