首页    期刊浏览 2024年11月08日 星期五
登录注册

文章基本信息

  • 标题:The relationship between differences in students’ computer and information literacy and response times: an analysis of IEA-ICILS data
  • 本地全文:下载
  • 作者:Melanie Heldt ; Corinna Massek ; Kerstin Drossel
  • 期刊名称:Large-scale Assessments in Education
  • 电子版ISSN:2196-0739
  • 出版年度:2020
  • 卷号:8
  • 期号:1
  • 页码:1-20
  • DOI:10.1186/s40536-020-00090-1
  • 摘要:Background Due to the increasing use of information and communication technology, computer-related skills are important for all students in order to participate in the digital age (Fraillon, J., Ainley, J., Schulz, W., Friedman, T. & Duckworth, D. (2019). Preparing for life in a digital world: IEA International Computer and Information Literacy Study 2018 International Report. Amsterdam: International Association for the Evaluation of Educational Achievement (IEA). Retrieved from https://www.iea.nl/sites/default/files/2019-11/ICILS 2019 Digital final 04112019.pdf). Educational systems play a key role in the mediation of these skills (Eickelmann. Second Handbook of Information Technology in Primary and Secondary Education. Cham: Springer, 2018). However, previous studies have shown differences in students’ computer and information literacy (CIL). Although various approaches have been used to explain these differences, process data, such as response times, have never been taken into consideration. Based on data from the IEA-study ICILS 2013 of the Czech Republic, Denmark and Germany, this secondary analysis examines to what extent response times can be used as an explanatory approach for differences in CIL also within different groups of students according to student background characteristics (gender, socioeconomic background and immigrant background). Methods First, two processing profiles using a latent profile analysis (Oberski 2016) based on response times are determined—a fast and a slow processing profile. To detect how these profiles are related to students’ CIL, also in conjunction with students’ background characteristics (socioeconomic and immigrant background), descriptive statistics are used. Results The results show that in the Czech Republic and Germany, students belonging to the fast processing profile have on average significantly higher CIL than students allocated to the slow processing profile. In Denmark, there are no significant differences. Concerning the student background characteristics in the Czech Republic, there are significant negative time-on-task effects for all groups except for students with an immigrant background and students with a high parental occupational status. There are no significant differences in Denmark. For Germany, a significant negative time-on-task effect can be found among girls. However, the other examined indicators for Germany are ambiguous. Conclusions The results show that process data can be used to explain differences in students’ CIL: In the Czech Republic and Germany, there is a correlation between response times and CIL (significant negative time-on-task effect). Further analysis should also consider other aspects of CIL (e.g. reading literacy). What becomes clear, however, is that when interpreting and explaining differences in competence, data should also be included that relates to the completion process during testing.
  • 其他摘要:AbstractBackground

    Due to the increasing use of information and communication technology, computer-related skills are important for all students in order to participate in the digital age (Fraillon, J., Ainley, J., Schulz, W., Friedman, T. & Duckworth, D. (2019). Preparing for life in a digital world: IEA International Computer and Information Literacy Study 2018 International Report. Amsterdam: International Association for the Evaluation of Educational Achievement (IEA). Retrieved from https://www.iea.nl/sites/default/files/2019-11/ICILS%202019%20Digital%20final%2004112019.pdf). Educational systems play a key role in the mediation of these skills (Eickelmann. Second Handbook of Information Technology in Primary and Secondary Education. Cham: Springer, 2018). However, previous studies have shown differences in students’ computer and information literacy (CIL). Although various approaches have been used to explain these differences, process data, such as response times, have never been taken into consideration. Based on data from the IEA-study ICILS 2013 of the Czech Republic, Denmark and Germany, this secondary analysis examines to what extent response times can be used as an explanatory approach for differences in CIL also within different groups of students according to student background characteristics (gender, socioeconomic background and immigrant background).

    Methods

    First, two processing profiles using a latent profile analysis (Oberski 2016) based on response times are determined—a fast and a slow processing profile. To detect how these profiles are related to students’ CIL, also in conjunction with students’ background characteristics (socioeconomic and immigrant background), descriptive statistics are used.

    Results

    The results show that in the Czech Republic and Germany, students belonging to the fast processing profile have on average significantly higher CIL than students allocated to the slow processing profile. In Denmark, there are no significant differences. Concerning the student background characteristics in the Czech Republic, there are significant negative time-on-task effects for all groups except for students with an immigrant background and students with a high parental occupational status. There are no significant differences in Denmark. For Germany, a significant negative time-on-task effect can be found among girls. However, the other examined indicators for Germany are ambiguous.

    Conclusions

    The results show that process data can be used to explain differences in students’ CIL: In the Czech Republic and Germany, there is a correlation between response times and CIL (significant negative time-on-task effect). Further analysis should also consider other aspects of CIL (e.g. reading literacy). What becomes clear, however, is that when interpreting and explaining differences in competence, data should also be included that relates to the completion process during testing.

国家哲学社会科学文献中心版权所有