首页    期刊浏览 2025年12月26日 星期五
登录注册

文章基本信息

  • 标题:Evaluating different machine learning techniques as surrogate for low voltage grids
  • 本地全文:下载
  • 作者:Stephan Balduin ; Tom Westermann ; Erika Puiutta
  • 期刊名称:Energy Informatics
  • 电子版ISSN:2520-8942
  • 出版年度:2020
  • 卷号:3
  • 期号:S1
  • 页码:1-12
  • DOI:10.1186/s42162-020-00127-3
  • 摘要:The transition of the power grid requires new technologies and methodologies, which can only be developed and tested in simulations. Especially larger simulation setups with many levels of detail can become quite slow. Therefore, the number of possible simulation evaluations decreases. One solution to overcome this issue is to use surrogate models, i. e., data-driven approximations of (sub)systems. In a recent work, we built a surrogate model for a low voltage grid using artificial neural networks, which achieved satisfying results. However, there were still open questions regarding the assumptions and simplifications made. In this paper, we present the results of our ongoing research, which answer some of these questions. We compare different machine learning algorithms as surrogate models and exchange the grid topology and size. In a set of experiments, we show that algorithms based on linear regression and artificial neural networks yield the best results independent of the grid topology. Furthermore, adding volatile energy generation and a variable phase angle does not decrease the quality of the surrogate models.
  • 其他摘要:Abstract

    The transition of the power grid requires new technologies and methodologies, which can only be developed and tested in simulations. Especially larger simulation setups with many levels of detail can become quite slow. Therefore, the number of possible simulation evaluations decreases. One solution to overcome this issue is to use surrogate models, i. e., data-driven approximations of (sub)systems. In a recent work, we built a surrogate model for a low voltage grid using artificial neural networks, which achieved satisfying results. However, there were still open questions regarding the assumptions and simplifications made. In this paper, we present the results of our ongoing research, which answer some of these questions. We compare different machine learning algorithms as surrogate models and exchange the grid topology and size. In a set of experiments, we show that algorithms based on linear regression and artificial neural networks yield the best results independent of the grid topology. Furthermore, adding volatile energy generation and a variable phase angle does not decrease the quality of the surrogate models.

  • 关键词:Machine learning;Artificial neural network;Surrogate model;Power grid;Power flow
国家哲学社会科学文献中心版权所有