首页    期刊浏览 2024年11月15日 星期五
登录注册

文章基本信息

  • 标题:Stratified Soil Sampling Improves Predictions of P Concentration in Surface Runoff and Tile Discharge
  • 本地全文:下载
  • 作者:William Osterholz ; Kevin King ; Mark Williams
  • 期刊名称:Soil Systems
  • 电子版ISSN:2571-8789
  • 出版年度:2020
  • 卷号:4
  • 期号:4
  • 页码:67-82
  • DOI:10.3390/soilsystems4040067
  • 出版社:MDPI AG
  • 摘要:Phosphorus (P) stratification in agricultural soils has been proposed to increase the risk of P loss to surface waters. Stratified soil sampling that assesses soil test P (STP) in a shallow soil horizon may improve predictions of P concentrations in surface and subsurface discharge compared to single depth agronomic soil sampling. However, the utility of stratified sampling efforts for enhancing understanding of environmental P losses remains uncertain. In this study, we examined the potential benefit of integrating stratified sampling into existing agronomic soil testing efforts for predicting P concentrations in discharge from 39 crop fields in NW Ohio, USA. Edge-of-field (EoF) dissolved reactive P (DRP) and total P (TP) flow-weighted mean concentrations in surface runoff and tile drainage were positively related to soil test P (STP) measured in both the agronomic sampling depth (0–20 cm) and shallow sampling depth (0–5 cm). Tile and surface DRP and TP were more closely related to shallow depth STP than agronomic STP, as indicated by regression models with greater coefficients of determination (R2) and lesser root-mean square errors (RMSE). A multiple regression model including the agronomic STP and P stratification ratio (Pstrat) provided the best model fit for DRP in surface runoff and tile drainage and TP in tile drainage. Additionally, STP often varied significantly between soil sampling events at individual sites and these differences were only partially explained by management practices, highlighting the challenge of assessing STP at the field scale. Overall, the linkages between shallow STP and P transport persisted over time across agricultural fields and incorporating stratified soil sampling approaches showed potential for improving predictions of P concentrations in surface runoff and tile drainage.
国家哲学社会科学文献中心版权所有