首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Generation and Classification of Activity Sequences for Spatiotemporal Modeling of Human Populations
  • 本地全文:下载
  • 作者:Albert Lund ; Ramkiran Gouripeddi ; Julio C Facelli
  • 期刊名称:Online Journal of Public Health Informatics
  • 电子版ISSN:1947-2579
  • 出版年度:2020
  • 卷号:12
  • 期号:1
  • 页码:1-12
  • DOI:10.5210/ojphi.v12i1.10588
  • 出版社:University of Illinois at Chicago
  • 摘要:Human activity encompasses a series of complex spatiotemporal processes that are difficult to model but represent an essential component of human exposure assessment. A significant empirical data source, like the American Time Use Survey (ATUS), can be leveraged to model human activity. However, tractable models require a better stratification of activity data to inform about different, but classifiable groups of individuals, that exhibit similar activity sequences and mobility patterns. Using machine learning algorithms, we developed an unsupervised classification and sequence generation method that is capable of generating coherent and stochastic sequences of activity from the ATUS data. This classification, when combined with any spatiotemporal exposure profile, allows the development of stochastic models of exposure patterns and records for groups of individuals exhibiting similar activity behaviors.
  • 关键词:American Time Use Survey; Machine Learning; Random Forests; Classification; Exposure Modeling
国家哲学社会科学文献中心版权所有