首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Detecting Citrus in Orchard Environment by Using Improved YOLOv4
  • 本地全文:下载
  • 作者:Wenkang Chen ; Shenglian Lu ; Binghao Liu
  • 期刊名称:Scientific Programming
  • 印刷版ISSN:1058-9244
  • 出版年度:2020
  • 卷号:2020
  • 页码:1-13
  • DOI:10.1155/2020/8859237
  • 出版社:Hindawi Publishing Corporation
  • 摘要:Real-time detection of fruits in orchard environments is one of crucial techniques for many precision agriculture applications, including yield estimation and automatic harvesting. Due to the complex conditions, such as different growth periods and occlusion among leaves and fruits, detecting fruits in natural environments is a considerable challenge. A rapid citrus recognition method by improving the state-of-the-art You Only Look Once version 4 (YOLOv4) detector is proposed in this paper. Kinect V2 camera was used to collect RGB images of citrus trees. The Canopy algorithm and the K-Means++ algorithm were then used to automatically select the number and size of the prior frames from these RGB images. An improved YOLOv4 network structure was proposed to better detect smaller citrus under complex backgrounds. Finally, the trained network model was used for sparse training, pruning unimportant channels or network layers in the network, and fine-tuning the parameters of the pruned model to restore some of the recognition accuracy. The experimental results show that the improved YOLOv4 detector works well for detecting different growth periods of citrus in a natural environment, with an average increase in accuracy of 3.15% (from 92.89% to 96.04%). This result is superior to the original YOLOv4, YOLOv3, and Faster R-CNN. The average detection time of this model is 0.06 s per frame at 1920 × 1080 resolution. The proposed method is suitable for the rapid detection of the type and location of citrus in natural environments and can be applied to the application of citrus picking and yield evaluation in actual orchards.
国家哲学社会科学文献中心版权所有