首页    期刊浏览 2025年06月23日 星期一
登录注册

文章基本信息

  • 标题:Logistic Regression Under Sparse Data Conditions
  • 本地全文:下载
  • 作者:Walker, David A. ; Smith, Thomas J.
  • 期刊名称:Journal of Modern Applied Statistical Methods
  • 出版年度:2019
  • 卷号:18
  • 期号:2
  • 页码:25-42
  • DOI:10.22237/jmasm/1604190660
  • 出版社:Wayne State University
  • 摘要:The impact of sparse data conditions was examined among one or more predictor variables in logistic regression and assessed the effectiveness of the Firth (1993) procedure in reducing potential parameter estimation bias. Results indicated sparseness in binary predictors introduces bias that is substantial with small sample sizes, and the Firth procedure can effectively correct this bias.
  • 关键词:Sparse; data; logistic regression; Firth
国家哲学社会科学文献中心版权所有