首页    期刊浏览 2025年02月17日 星期一
登录注册

文章基本信息

  • 标题:Memory-assisted reinforcement learning for diverse molecular de novo design
  • 本地全文:下载
  • 作者:Thomas Blaschke ; Ola Engkvist ; Jürgen Bajorath
  • 期刊名称:Journal of Cheminformatics
  • 印刷版ISSN:1758-2946
  • 电子版ISSN:1758-2946
  • 出版年度:2020
  • 卷号:12
  • 期号:1
  • 页码:1-17
  • DOI:10.1186/s13321-020-00473-0
  • 出版社:BioMed Central
  • 摘要:In de novo molecular design, recurrent neural networks (RNN) have been shown to be effective methods for sampling and generating novel chemical structures. Using a technique called reinforcement learning (RL), an RNN can be tuned to target a particular section of chemical space with optimized desirable properties using a scoring function. However, ligands generated by current RL methods so far tend to have relatively low diversity, and sometimes even result in duplicate structures when optimizing towards desired properties. Here, we propose a new method to address the low diversity issue in RL for molecular design. Memory-assisted RL is an extension of the known RL, with the introduction of a so-called memory unit. As proof of concept, we applied our method to generate structures with a desired AlogP value. In a second case study, we applied our method to design ligands for the dopamine type 2 receptor and the 5-hydroxytryptamine type 1A receptor. For both receptors, a machine learning model was developed to predict whether generated molecules were active or not for the receptor. In both case studies, it was found that memory-assisted RL led to the generation of more compounds predicted to be active having higher chemical diversity, thus achieving better coverage of chemical space of known ligands compared to established RL methods.
  • 关键词:Deep learning applications ; Reinforcement learning ; De Novo design ; Exploration strategy ; Recurrent neural networks
国家哲学社会科学文献中心版权所有