首页    期刊浏览 2025年02月21日 星期五
登录注册

文章基本信息

  • 标题:A linearized conservative Galerkin–Legendre spectral method for the strongly coupled nonlinear fractional Schrödinger equations
  • 本地全文:下载
  • 作者:Mingfa Fei ; Guoyu Zhang ; Nan Wang
  • 期刊名称:Advances in Difference Equations
  • 印刷版ISSN:1687-1839
  • 电子版ISSN:1687-1847
  • 出版年度:2020
  • 卷号:2020
  • 期号:1
  • 页码:1-23
  • DOI:10.1186/s13662-020-03017-w
  • 出版社:Hindawi Publishing Corporation
  • 摘要:In this paper, based on Galerkin–Legendre spectral method for space discretization and a linearized Crank–Nicolson difference scheme in time, a fully discrete spectral scheme is developed for solving the strongly coupled nonlinear fractional Schrödinger equations. We first prove that the proposed scheme satisfies the conservation laws of mass and energy in the discrete sense. Then a prior bound of the numerical solutions in $L^{\infty }$ -norm is obtained, and the spectral scheme is shown to be unconditionally convergent in $L^{2}$ -norm, with second-order accuracy in time and spectral accuracy in space. Finally, some numerical results are provided to validate our theoretical analysis.
  • 关键词:Fractional Schrödinger equation ; Legendre spectral method ; Conservation law ; Unconditional convergence ; Spectral accuracy
国家哲学社会科学文献中心版权所有