首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:Nonexistence of global solutions of fractional diffusion equation with time-space nonlocal source
  • 本地全文:下载
  • 作者:Abderrazak Nabti ; Ahmed Alsaedi ; Mokhtar Kirane
  • 期刊名称:Advances in Difference Equations
  • 印刷版ISSN:1687-1839
  • 电子版ISSN:1687-1847
  • 出版年度:2020
  • 卷号:2020
  • 期号:1
  • 页码:1-10
  • DOI:10.1186/s13662-020-03083-0
  • 出版社:Hindawi Publishing Corporation
  • 摘要:We prove the nonexistence of solutions of the fractional diffusion equation with time-space nonlocal source $$\begin{aligned} u_{t} + (-\Delta )^{\frac{\beta }{2}} u =\bigl(1+ \vert x \vert \bigr)^{ \gamma } \int _{0}^{t} (t-s)^{\alpha -1} \vert u \vert ^{p} \bigl\Vert \nu ^{ \frac{1}{q}}(x) u \bigr\Vert _{q}^{r} \,ds \end{aligned}$$ for $(x,t) \in \mathbb{R}^{N}\times (0,\infty )$ with initial data $u(x,0)=u_{0}(x) \in L^{1}_{\mathrm{loc}}(\mathbb{R}^{N})$ , where $p,q,r>1$ , $q(p+r)>q+r$ , $0<\gamma \leq 2 $ , $0<\alpha <1$ , $0<\beta \leq 2$ , $(-\Delta )^{\frac{\beta }{2}}$ stands for the fractional Laplacian operator of order β, the weight function $\nu (x)$ is positive and singular at the origin, and $\Vert \cdot \Vert _{q}$ is the norm of $L^{q}$ space.
  • 关键词:26A33 ; 35A01 ; 35K55
国家哲学社会科学文献中心版权所有