首页    期刊浏览 2024年10月05日 星期六
登录注册

文章基本信息

  • 标题:A productivity prediction method for condensate gas reservoir
  • 本地全文:下载
  • 作者:Quan Hua Huang ; Hong Jun Ding ; Xing Yu Lin
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2020
  • 卷号:213
  • 页码:1-6
  • DOI:10.1051/e3sconf/202021302001
  • 出版社:EDP Sciences
  • 摘要:At present, multiphase flow productivity calculation requires many parameters, and most of them only consider oil and gas two-phase flow, which is complicated and limited. Therefore, a reasonable productivity formula of condensate gas reservoir with producing water is needed. The three-zone model of condensate gas reservoirs is generally applied to the physical model for inferring productivity. On this basis, an improved model is established, which includes that different seepage characteristics are considered for different zones. Moreover, the effects of inclined angle and water production on gas wells are regarded as pseudo-skin factors and additional-skin factors. In addition, Zone I considers the effects of high-speed nonDarcy effect(HSND), starting pressure gradient, stress sensitivity, inclined angle and water production; Zone II is the same way excepting starting pressure gradient and stress sensitivity ; Zone III only considers the effects of inclined angle and water production. As a result, a productivity equation with multiple factors for condensate gas wells is established. Through analysing cases and influences in H gas reservoir X1 well, the HSND, starting pressure gradient, stress sensitivity and water production have a negative impact on gas well productivity, but the inclined angle is opposite. Founded that the starting pressure gradient impacts on productivity is less than the HSND because of the limited radius of Zone I; the impact of the HSND on productivity increases with the decreasing of bottom hole pressure; the impact of water production on gas well productivity is much higher.
国家哲学社会科学文献中心版权所有