摘要:In the current manuscript, the notion of a cone b 2 -metric space over Banach’s algebra with parameter b ≻ ¯ e is introduced. Furthermore, using α -admissible Hardy-Rogers’ contractive conditions, we have proven fixed-point theorems for self-mappings, which generalize and strengthen many of the conclusions in existing literature. In order to verify our key result, a nontrivial example is given, and as an application, we proved a theorem that shows the existence of a solution of an infinite system of integral equations.