首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Introducing Diversion Graph for Real-Time Spatial Data Analysis with Location Based Social Networks
  • 本地全文:下载
  • 作者:Sameera Kannangara ; Hairuo Xie ; Egemen Tanin
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2020
  • 卷号:177
  • 页码:1-15
  • DOI:10.4230/LIPIcs.GIScience.2021.I.7
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Neighbourhood graphs are useful for inferring the travel network between locations posted in the Location Based Social Networks (LBSNs). Existing neighbourhood graphs, such as the Stepping Stone Graph lack the ability to process a high volume of LBSN data in real time. We propose a neighbourhood graph named Diversion Graph, which uses an efficient edge filtering method from the Delaunay triangulation mechanism for fast processing of LBSN data. This mechanism enables Diversion Graph to achieve a similar accuracy level as Stepping Stone Graph for inferring travel networks, but with a reduction of the execution time of over 90%. Using LBSN data collected from Twitter and Flickr, we show that Diversion Graph is suitable for travel network processing in real time.
  • 关键词:moving objects; shortest path; graphs
国家哲学社会科学文献中心版权所有