首页    期刊浏览 2025年04月14日 星期一
登录注册

文章基本信息

  • 标题:LSTM-TrajGAN: A Deep Learning Approach to Trajectory Privacy Protection
  • 本地全文:下载
  • 作者:Jinmeng Rao ; Song Gao ; Yuhao Kang
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2020
  • 卷号:177
  • 页码:1-17
  • DOI:10.4230/LIPIcs.GIScience.2021.I.12
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:The prevalence of location-based services contributes to the explosive growth of individual-level trajectory data and raises public concerns about privacy issues. In this research, we propose a novel LSTM-TrajGAN approach, which is an end-to-end deep learning model to generate privacy-preserving synthetic trajectory data for data sharing and publication. We design a loss metric function TrajLoss to measure the trajectory similarity losses for model training and optimization. The model is evaluated on the trajectory-user-linking task on a real-world semantic trajectory dataset. Compared with other common geomasking methods, our model can better prevent users from being re-identified, and it also preserves essential spatial, temporal, and thematic characteristics of the real trajectory data. The model better balances the effectiveness of trajectory privacy protection and the utility for spatial and temporal analyses, which offers new insights into the GeoAI-powered privacy protection.
  • 关键词:GeoAI; Deep Learning; Trajectory Privacy; Generative Adversarial Networks
国家哲学社会科学文献中心版权所有