首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Grid Search Tuning of Hyperparameters in Random Forest Classifier for Customer Feedback Sentiment Prediction
  • 其他标题:Grid Search Tuning of Hyperparameters in Random Forest Classifier for Customer Feedback Sentiment Prediction
  • 本地全文:下载
  • 作者:Siji George C G ; B.Sumathi
  • 期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
  • 印刷版ISSN:2158-107X
  • 电子版ISSN:2156-5570
  • 出版年度:2020
  • 卷号:11
  • 期号:9
  • DOI:10.14569/IJACSA.2020.0110920
  • 出版社:Science and Information Society (SAI)
  • 摘要:Text classification is a common task in machine learning. One of the supervised classification algorithm called Random Forest has been generally used for this task. There is a group of parameters in Random Forest classifier which need to be tuned. If proper tuning is performed on these hyperparameters, the classifier will give a better result. This paper proposes a hybrid approach of Random Forest classifier and Grid Search method for customer feedback data analysis. The tuning approach of Grid Search is applied for tuning the hyperparameters of Random Forest classifier. The Random Forest classifier is used for customer feedback data analysis and then the result is compared with the results which get after applying Grid Search method. The proposed approach provided a promising result in customer feedback data analysis. The experiments in this work show that the accuracy of the proposed model to predict the sentiment on customer feedback data is greater than the performance accuracy obtained by the model without applying parameter tuning.
  • 关键词:Classification; grid search; hyperparameters; parameter tuning; random forest classifier; sentiment analysis
国家哲学社会科学文献中心版权所有