首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:Aspect-Based Sentiment Analysis and Emotion Detection for Code-Mixed Review
  • 其他标题:Aspect-Based Sentiment Analysis and Emotion Detection for Code-Mixed Review
  • 本地全文:下载
  • 作者:Andi Suciati ; Indra Budi
  • 期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
  • 印刷版ISSN:2158-107X
  • 电子版ISSN:2156-5570
  • 出版年度:2020
  • 卷号:11
  • 期号:9
  • DOI:10.14569/IJACSA.2020.0110921
  • 出版社:Science and Information Society (SAI)
  • 摘要:Review can affect customer decision making because by reading it, people manage to know whether the review is positive, or negative. However, positive, negative, and neutral, without considering the emotion will be not enough because emotion can strengthen the sentiment result. This study explains about the comparison of machine learning and deep learning in sentiment as well as emotion classification with multi-label classification. In machine learning comparison, the problem transformation that we used are Binary Relevance (BR), Classifier Chain (CC), and Label Powerset (LP), with Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), and Extra Tree Classifier (ET) as algorithms of machine learning. The features we compared are n-gram language model (unigram, bigram, unigram-bigram). For deep learning, algorithms that we applied are Gated Recurrent Unit (GRU) and Bidirectional Long Short-Term Memory (BiLSTM), using self-developed word embedding. The comparison results show RF dominates with 88.4% and 89.54% F1 scores with CC method for food aspect, and LP for price, respectively. For service and ambience aspects, ET leads with 92.65% and 87.1% with LP and CC methods, respectively. On the other hand, in deep learning comparison, GRU and BiLSTM obtained similar F1- score for food aspect, 88.16%. On price aspect, GRU leads with 83.01%. However, for service and ambience, BiLSTM achieved higher F1-score, 89.03% and 84.78%.
  • 关键词:Sentiment analysis; emotion; multi-label classification; machine learning; deep learning
国家哲学社会科学文献中心版权所有