首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:A non-parametric density estimate adaptation for population abundance when the shoulder condition is violated
  • 其他标题:A non-parametric density estimate adaptation for population abundance when the shoulder condition is violated
  • 本地全文:下载
  • 作者:Baker Ishaq Albadareen ; Noriszura Ismail ; Omar M. Eidous
  • 期刊名称:Electronic Journal of Applied Statistical Analysis
  • 电子版ISSN:2070-5948
  • 出版年度:2020
  • 卷号:13
  • 期号:2
  • 页码:562-579
  • DOI:10.1285/i20705948v13n2p562
  • 出版社:University of Salento
  • 摘要:The non-parametric kernel density estimation is used in practice to estimate population abundance using the line transect sampling. In general, the classical kernel estimator of f(0) tends to be underestimated. In this article, a shifted logarithmic transformation of perpendicular distance is proposed for the kernel estimator when the shoulder condition is violated. Mathematically, the proposed estimator is more efficient than the classical kernel estimator. A simulation study is also carried out to compare the performance of the proposed estimators and the classical kernel estimators.
  • 关键词:line transect;log-transformation;kernel estimator;shoulder condition;abundance;bandwidth
国家哲学社会科学文献中心版权所有