摘要:The surface quality of steel plates is deteriorated as they contact rollers while being conveyed during manufacturing processes. To solve this problem, we previously proposed a hybrid electromagnetic levitation system comprising electromagnets, permanent magnets, and a horizontal positioning control system for steel plates. Moreover, to increase stability, we proposed integrating these levitation systems. In this study, we aim to determine the optimal placement of permanent magnets in the levitation system to suppress the deflection of a levitated steel plate for cases where the magnetic field in the horizontal direction changes. Using a genetic algorithm, the optimal gap, number, and placement of permanent magnets in the system are obtained.