首页    期刊浏览 2025年02月26日 星期三
登录注册

文章基本信息

  • 标题:A Machine Learning Approach for Studying the Comorbidities of Complex Diagnoses
  • 本地全文:下载
  • 作者:Marina Sánchez-Rico ; Jesús M. Alvarado
  • 期刊名称:Behavioral Sciences
  • 电子版ISSN:2076-328X
  • 出版年度:2019
  • 卷号:9
  • 期号:12
  • 页码:122-135
  • DOI:10.3390/bs9120122
  • 出版社:MDPI Publishing
  • 摘要:The study of diagnostic associations entails a large number of methodological problems regarding the application of machine learning algorithms, collinearity and wide variability being some of the most prominent ones. To overcome these, we propose and tested the usage of uniform manifold approximation and projection (UMAP), a very recent, popular dimensionality reduction technique. We showed its effectiveness by using it on a large Spanish clinical database of patients diagnosed with depression, to whom we applied UMAP before grouping them using a hierarchical agglomerative cluster analysis. By extensively studying its behavior and results, validating them with purely unsupervised metrics, we show that they are consistent with well-known relationships, which validates the applicability of UMAP to advance the study of comorbidities.
  • 关键词:comorbidities; depression; UMAP; hierarchical clustering comorbidities ; depression ; UMAP ; hierarchical clustering
国家哲学社会科学文献中心版权所有