首页    期刊浏览 2024年07月22日 星期一
登录注册

文章基本信息

  • 标题:Development of a Novel SPR Assay to Study CXCR4–Ligand Interactions
  • 本地全文:下载
  • 作者:Arnaud Boonen ; Abhimanyu K. Singh ; Anneleen Van Hout
  • 期刊名称:Biosensors
  • 电子版ISSN:2079-6374
  • 出版年度:2020
  • 卷号:10
  • 期号:10
  • 页码:150-164
  • DOI:10.3390/bios10100150
  • 出版社:MDPI Publishing
  • 摘要:G protein-coupled receptors (GPCRs) are involved in a plethora of different diseases. Consequently, these proteins are considered as an important class of drug targets. Measuring detailed kinetic information on these types of proteins has been challenging. Surface plasmon resonance (SPR) can provide this information, however, the use of SPR on GPCRs remains a complex issue. Here, we report an SPR assay to investigate the interactions between the full-length chemokine receptor CXCR4 and nanobody-Fc (Nb-Fc) ligands. Nb-Fcs consist of two monovalent VHH domains fused with an Fc domain of a human IgG molecule. The CXCR4 protein used in this assay was produced with a C-terminal 10x-histidine tag and was immobilized on a nitrilotriacetic acid chip. In order to verify the sensitivity and effectiveness of this assay, the results were compared to data obtained from cellular assays as well as from another SPR assay using CXCR4 virus-like particles (VLPs). CXCR4 remained intact and stable for at least 12 h, and the kinetic results correlated well with both the cellular assays and the VLP SPR assay results. Apart from determining the binding kinetics of Nb-Fc with CXCR4, our results contributed to understanding CXCR4 interaction dynamics. In conclusion, this assay provides a viable experimental platform that has high potential to be expanded for studying other molecules as well as other histidine-tagged GPCRs.
  • 关键词:surface plasmon resonance; G protein-coupled receptors; CXCR4; histidine tag; nanobodies; kinetics surface plasmon resonance ; G protein-coupled receptors ; CXCR4 ; histidine tag ; nanobodies ; kinetics
国家哲学社会科学文献中心版权所有