首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Direct Numerical Simulation of Turbulent Channel Flow on High-Performance GPU Computing System
  • 本地全文:下载
  • 作者:Giancarlo Alfonsi ; Stefania A. Ciliberti ; Marco Mancini
  • 期刊名称:Computation
  • 电子版ISSN:2079-3197
  • 出版年度:2016
  • 卷号:4
  • 期号:1
  • 页码:13-31
  • DOI:10.3390/computation4010013
  • 出版社:MDPI Publishing
  • 摘要:The flow of a viscous fluid in a plane channel is simulated numerically following the DNS approach, and using a computational code for the numerical integration of the Navier-Stokes equations implemented on a hybrid CPU/GPU computing architecture (for the meaning of symbols and acronyms used, one can refer to the Nomenclature). Three turbulent-flow databases, each representing the turbulent statistically-steady state of the flow at three different values of the Reynolds number, are built up, and a number of statistical moments of the fluctuating velocity field are computed. For turbulent-flow-structure investigation, the vortex-detection technique of the imaginary part of the complex eigenvalue pair in the velocity-gradient tensor is applied to the fluctuating-velocity fields. As a result, and among other types, hairpin vortical structures are unveiled. The processes of evolution that characterize the hairpin vortices in the near-wall region of the turbulent channel are investigated, in particular at one of the three Reynolds numbers tested, with specific attention given to the relationship that exists between the dynamics of the vortical structures and the occurrence of ejection and sweep quadrant events. Interestingly, it is found that the latter events play a preminent role in the way in which the morphological evolution of a hairpin vortex develops over time, as related in particular to the establishment of symmetric and persistent hairpins. The present results have been obtained from a database that incorporates genuine DNS solutions of the Navier-Stokes equations, without superposition of any synthetic structures in the form of initial and/or boundary conditions for the simulations.
  • 关键词:Navier-Stokes equations; DNS; turbulent channel flow; swirling-strength criterion for vortex detection; hairpin vortices; quadrant events Navier-Stokes equations ; DNS ; turbulent channel flow ; swirling-strength criterion for vortex detection ; hairpin vortices ; quadrant events
国家哲学社会科学文献中心版权所有