首页    期刊浏览 2024年10月07日 星期一
登录注册

文章基本信息

  • 标题:Assessing Density-Functional Theory for Equation-Of-State
  • 本地全文:下载
  • 作者:Per Söderlind ; David A. Young
  • 期刊名称:Computation
  • 电子版ISSN:2079-3197
  • 出版年度:2018
  • 卷号:6
  • 期号:1
  • 页码:13-25
  • DOI:10.3390/computation6010013
  • 出版社:MDPI Publishing
  • 摘要:The last decade has seen a continued development of better experimental techniques to measure equation-of-state (EOS) for various materials. These improvements of both static and shock-compression approaches have increased the accuracy of the EOS and challenged the complimentary theoretical modeling. The conventional modeling of EOS, at least at pressure and temperature conditions that are not too extreme, is founded on density-functional theory (DFT). Naturally, there is an increased interest in the accuracy of DFT as the measurements are becoming more refined and there is a particular interest in the robustness and validity of DFT at conditions where experimental data are not available. Here, we consider a broad and large set of 64 elemental solids from low atomic number Z up to the very high Z actinide metals. The intent is to compare DFT with experimental zero-temperature isotherms up to 1 Mbar (100 GPa) and draw conclusions regarding the theoretical (DFT) error and quantify a reasonable and defensible approach to define the theoretical uncertainty. We find that in all 64 cases the DFT error at high pressure is smaller than or equal to the DFT error at lower pressures which thus provides an upper bound to the error at high compression.
  • 关键词:density-functional theory; equation-of-state density-functional theory ; equation-of-state
国家哲学社会科学文献中心版权所有